Announcement

Collapse
No announcement yet.

Scientists Present New Clues to Cut Through the Mystery of Titan's Atmospheric Haze

Collapse
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Scientists Present New Clues to Cut Through the Mystery of Titan's Atmospheric Haze

    By Alton Parrish (Reporter)


    Saturn’s largest moon, Titan, is unique among all moons in our solar system for its dense and nitrogen-rich atmosphere that also contains hydrocarbons and other compounds, and the story behind the formation of this rich chemical mix has been the source of some scientific debate.

    Now, a research collaboration involving scientists in the Chemical Sciences Division at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has zeroed in on a low-temperature chemical mechanism that may have driven the formation of multiple-ringed molecules – the precursors to more complex chemistry now found in the moon’s brown-orange haze layer.

    The study, co-led by Ralf Kaiser at the University of Hawaii at Manoa and published in the Oct. 8 edition of the journal Nature Astronomy, runs counter to theories that high-temperature reaction mechanisms are required to produce the chemical makeup that satellite missions have observed in Titan’s atmosphere.
    The team also included other researchers at Berkeley Lab, the University of Hawaii at Manoa, Samara University in Russia, and Florida International University. The team used vacuum ultraviolet light experiments at Berkeley Lab’s Advanced Light Source (ALS), together with computer simulations and modeling work to demonstrate the chemical reactions that contribute to Titan’s modern-day atmospheric chemistry.

    The atmospheric haze of Titan, Saturn’s largest moon (pictured here along Saturn’s midsection), is captured in this natural-color image (box at left). A new study, which involved experiments at Berkeley Lab’s Advanced Light Source, has provided new clues about the chemical steps that may have produced this haze.

    More
    Scientists have explored the chemistry at work when combining two gases: one composed of two-ring molecular structure known as naphthyl radicals (upper left), and the other composed of a hydrocarbon called vinylacetylene (lower left). The white spheres represent hydrogen atoms and the dark spheres represent carbon atoms. Behind these 3-D molecular representations is an image of Saturn’s moon Titan, taken by NASA’s Cassini spacecraft.
Working...
X